
Chapter 4

[ 91 ]

5Tier.Common: This class library project will have code that is common to all 
layers (such as enumerated types) and will also hold Data Transfer Objects. 
This project will be referenced by all layers, since it is common to all of them.
5Tier.Business: This class library project will handle all business objects 
and will call the DAL project and pass data to and from it using DTOs.  
So this project will reference the 5Tier.Common project as well as the  
NTier.DAL project.
5Tier.Web: This web project will have the UI layer and will also use  
DTOs to display and pass data. It will reference the 5Tier.Common and  
5Tier.Business projects only.

The following diagram shows how these tiers would interact with each other:

5Tier.Web

5Tier.Business

5Tier.DAL

Database

5Tier.Common Client Browser

Some of you might be thinking why I did not call this system a 6-tier 
system. Since we have the 5Tier.Common project compiling to a separate 
physical assembly, we can include it as another tier and refer the system 
as one belonging to 6-tier architecture instead of a 5-tier one. But as I said 
earlier, there are no strict rules and it is up to us to define and configure 
the application. 
I do not see the Common project as a separate tier as I treat the DTOs 
as transient structures, which pass through the different tiers and can 
be accessed by any layer. So I do not treat them as a separate tier. But 
if you do want to name it separately, there is nothing wrong with that 
convention either.

Let us start with the code in the business layer. Here, I will highlight the important 
portions of the code to understand the architectural aspects of this 5-tier configuration. 

•

•

•



N-Tier Architecture

[ 92 ]

Take the example of what the Customer class will look like in this business tier. This 
class will be similar to the 4-tier business classes we saw earlier, and will have all of the 
same attributes as well as methods such as Add(), Update(), Delete(), Find(). Now, 
instead of putting all fields as private variables and then making properties inside the 
Customer class, we first create a DTO named CustomerDTO in the Common project 
encapsulating all the customer-related attributes.

Create two new class library projects as follows:

5Tier.Business

5Tier.Common

In the 5Tier.Common project, create a new folder named DTO. Add a new class file 
named CustomerDTO, which has the following code:

using System;
using System.Collections.Generic;

namespace 5Tier.Common
{
   /// <summary>
   ///DTO for the 'Customer' object.
   /// </summary>
   [Serializable]
   public class CustomerDTO
   {
       #region Constructors
        ///<summary>
      /// Default constructor
        ///</summary>
       public CustomerDTO()
      {
        this.loadStatus = LoadStatus.Initialized;
      }
      
      ///<summary>
      /// Copy constructor
      ///</summary>
       public CustomerDTO(CustomerDTO sourceDTO)
      {
          loadStatus = dto.LoadStatus;
          ID = sourceDTO.ID;
          Name = sourceDTO.Name;
          Address = sourceDTO.Address;
          PhoneNo = sourceDTO.PhoneNo;

•

•


